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Abstract—Emulation of decision making in neuromorphic sys-
tem can be useful for developing remarkable bio-mimetic devices
capable of implementing adaptive and interactive behaviors with
the varying environment. Both experimental and theoretical
studies reveal that the dynamics of NMDA receptors (NMDARs)
plays a critical role in attractor dynamics of decision. However,
the functionality of NMDARs has not been considered in current
neuromorphic decision circuit. Here we present a novel method
for the neuromorphic implementation of a two-variable decision
circuit with NMDARs. Circuit simulations and theoretical analy-
sis reveal that the decision circuit can present not only the winner-
take-all mechanism but also the slow integration of sensory
evidences, both of which are embedded in gradually ramp-up
activities observed in our simulations and in the electrophysi-
ological recording in monkey’s experiments. We demonstrated
that the decision circuit we built can generate reliable attractor
dynamics capable of reproducing both neurophysiological and
behavioral observations during decision tasks.

I. INTRODUCTION

Perceptual decision making is an important cognitive func-
tion of selecting an option or an action from among a set
of alternatives, and its physical implementation in silicon is
of benefit to develop new generation of technologies that
carry out brain-like artificial intelligence while maintaining
remarkable energy efficiency [1]. Experimental and theoretical
researches found that the attractor dynamics of decision mak-
ing relies on not only the saddle-node structure of the recurrent
neural network that achieves the functionality of selecting an
alternative, but also the dynamics of NMDA receptors (NM-
DARs) that contributes to the slow time integration of sensory
evidences [2]. Recently, the forced two-choice decision tasks
based on the discrete recurrent network was implemented
in a custom mixed signal analog/digital neuromorphic chip
containing an array of 58 analog integrate-and-fire neurons and
programmable synapses [3] . Also these tasks based on the
continuous recurrent network was achieved in the integrate-
and-fire stop-learning winner-take-all chip [4]. The nonlinear
dynamics of the NMDAR-mediated synaptic current is not
taken into account in these neuromorphic systems, but sat-
uration characteristics of silicon neurons and AMPA receptor-
mediated synaptic currents [5] with the long time constant
instead. Although the decision tasks can be implemented in

these systems, the range of neural coding by the firing activity
in the decision task is narrowed and the slow dynamics for the
evidence integration is deteriorated.

In this work, we developed a decision circuit with NM-
DARs according to the two-variable version of a biophysical
plausible decision model proposed by Wong and Wang [6].
In particular, using the dynamic voltage-current circuit and
multipliers (Figure 1), we applied the dynamical system ap-
proach of circuit synthesis to implement the NMDAR gating
variable circuit (Figure 2), which is described by the first
order kinetic equation of a reversible chemical reaction. Circuit
simulations demonstrated that the NMDAR gating variable
circuit can capture the nonlinear dynamical characteristics of
corresponding gating variable, and the decision circuit with
NMDARs can reproduce ramping neural activities observed
in the electrophysiological recording in monkey’s experiments
[7]. The slope of these activities increases with the coherence
of sensory inputs, and the reaction time decreases with the
coherence of sensory inputs. Meanwhile, by comparing these
simulations with results from the phase-plane analysis for
the two-variable decision model, our decision circuit with
NMDARs shows neural activities and behaviors predicted
by the saddle-node structure during the decision task. Both
simulations and theoretical analysis demonstrated that this
neuromorphic circuit has attractor dynamics of perceptual
decision making.

The paper is organized as follow: first, neuromorphic circuit
of the NMDAR gating variable and a two-variable decision
model were introduced in the methods section; second, re-
sults from circuit simulations and theoretical analysis were
shown and demonstrated attractor dynamics of decision can
be implemented completely; finally, results were discussed and
concluded in the conclusions section.

II. MATERIALS AND METHODS

A. Neuromorphic circuit of the NMDAR gating variable

Experimental and theoretical researches found that the
NMDA receptors at recurrent synapses are important to slow
time integration in decision making [6]. The dynamics of
the NMDAR gating variable is characterized by a fast rise

978-1-4799-5341-7/16/$31.00 ©2016 IEEE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

369 

  



VS

C

M0

M1 M2

Iref

Iref

IS

VL

IIN

M1

M2 M3

M4

M5 M6

IIN

I1 I2

IOUT

IIN

I1

IS

I2

Multiplier
IIN

Iref

ISDynamic  

V-I Unit

a b

Fig. 1: Schematics of dynamic voltage-current unit (DVI) and multiplier (M).

followed by a slow decay. When the presynaptic inputs at
recurrent synapse in a neural population are described by a
Poisson spike train at a rate of r per cell, the slow dynamics
of the average NMDAR gating variable S is characterized by
the nonlinear differential equation as follows:

dS
dt

=−S
τ
+(1−S)γr (1)

where τ is the decay time constant, and γ is a gain cofficient.
In order to implement the circuit of NMDAR gating variable,
the corresponding mathematical expression is approximately
transformed into the following current-mode description:

CUT
d
dt

IS

Ire f
=−Iτ

IS

Ire f
+(1− IS

Ire f
)

Iγ

Ire f
Ir (2)

where dimensionless variables S and γ are replaced by two
ratios of currents IS

Ire f
and Iγ

Ire f
, respectively. Ir is a current

representing r, and the time constant τ = CUT
Iτ

. Equation 1
and Equation 2 are not rigorously equivalent, but have similar
dynamics.

We used a dynamic voltage-current circuit (DVI) originally
proposed for the log-domain circuit [8] to achieve the deriva-
tive on the left side of Equation 2 (Figure 1a). Since

IS

Ire f
=

IM2

IM1

= e
VS−V0

UT (3)

the dynamics of the voltage difference VS −V0 has the follow-
ing relationship with IS/Ire f :

d
dt

IS

Ire f
=

1
UT

IS

Ire f

d
dt
(VS −V0) (4)

By combining Equation 4 and Equation 2, we can get the
following voltage-mode differential equation to characterize
the dynamics of S:

C
d
dt
(VS −V0) =−Iτ +

Iγ

IS
Ir −

Iγ

Ire f
Ir (5)

According to the dynamical systems approach of circuit
synthesis [9], we require three currents to drive the capacitor in
the dynamic voltage-current circuit (Figure 1a and Figure 2) to
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Fig. 2: The block representations of the NMDAR gating variable circuit (a),
the synaptic current circuit (b) and the linear threshold unit circuit (c).

realize the circuit: two currents decrease the capacitor voltage
and one increases it. The first current term Iτ corresponds
to the time constant of the circuit. The second term and the
third term can be generated by using a multiplier (Figure 1b
and Figure 2a) on the basis of the translinear principle for
subthreshold transistors [10], [11].

B. Neuromorphic implementation for a firing rate model of
decision making

In the two-variable decision model developed by Wong
and Wang [6], two dynamical variables S1 and S2 represent
averaged gating variables of two populations selective for
rightward and leftward motion directions. For the sake of
neuromorphic implementations, original reduced model is re-
expressed in the current-mode description. First, we have a
two-variable systems described by the following dynamical
equations (also same with Equation 2):

CUT
d
dt

IS,i

Ire f
=−Iτ

IS,i

Ire f
+(1−

IS,i

Ire f
)

Iγ

Ire f
Ir,i (6)

in which i (= 1,2) labels two selective populations. For the
sake of simplicity, we adopted the linear-threshold unit (LTU)
to model the firing rates of two populations Ir,i, which are
given by the equation as follows:

Ir,i = [
Ir
gain

Ir
re f

Isyn,i − Ir
thr]

+ (7)

where the dimensionless variable
Ir
gain
Ir
re f

is the gain of the

neural population and
Ir
re f

Ir
gain

Ir
thr is the threshold current. Isyn,i

denotes corresponding synaptic current. [x]+ is equivalent to
the function max(x,0). According to Equation 7, we only
require a multiplier and several current mirrors to realized the
LTU circuit (Figure 2c). In the phase-plane analysis (Figure
4c), we used Equation 8 as the model of the LTU circuit
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Fig. 3: Characteristics of the NMDAR gating variable circuit. (a) Transient
responses in circuit simulations for varying firing rate Ir . The gating variable
S = IS/Ire f . Ir is presented during the first 0.5s. The dashed vertical line
indicates the state S̄, in which the state of the circuit becomes stable.
Parameters: Iγ = 10pA, Iτ = 5pA and Ire f = 100pA. (b) S̄ increases with Ir
and Iγ . Figure b,c,e and f have a unified legend. (c) Time constant of the
circuit τ is independent of Ir and Iγ . The errors of τ for small Ir and Iγ are
derived from the decreasing of the effective Iτ that is copied from a current
mirror. (d) Transient responses in circuit simulations for varying current Iτ .
Parameters: Ir = 100pA, Iγ = 10pA and Ire f = 100pA. (e) S̄ decreases with Iτ .
(f) The time constant of the circuit τ decreases with Iτ , but is independent of
Iγ .

instead of Equation 7:

Ir,i = (
Ir
gain

Ir
re f

Isyn,i − Ir
thr)/(1− exp(−g(

Ir
gain

Ir
re f

Isyn,i − Ir
thr))) (8)

in which the parameter g tunes the smoothness of the firing rate
curve around the threshold current. The total synaptic currents
of two selective populations Isyn,i are given by following
equations, respectively: Isyn,1 = Iw+

IS,1
Ire f

− Iw−
IS,2
Ire f

+ I0 + Isti,1

Isyn,2 = Iw+
IS,2
Ire f

− Iw−
IS,1
Ire f

+ I0 + Isti,2
(9)

in which Isti,i represents the external motion stimulus to the
population i and I0 is the effective background input. Isti,1 =
Isti(1+coh), and Isti,2 = Isti(1−coh), in which Isti denotes the
stimulus strength and coh denotes the coherence level of the
stimulus. Iw+ and Iw− are effective self-excitation and mutual-
inhibition current per unit (the gating variable) in the recurrent
network, respectively. The synaptic current block can also be
realized by two multipliers and several current mirrors (Figure
2b).

III. RESULTS

A. Dynamic characteristics of the NMDAR gating variable
circuit

We built the neuromorphic circuit of the NMDAR gating
variable by using one dynamic voltage-current uint (DVI), two

multipliers and several current mirrors according to Equation
5 (Figure 2a). Major dynamic characteristics of this circuit we
concentrated on are the steady state and the time constant for
a given configuration. From Equation 2, we can get the steady
state S̄ and the time constant τ as follows:

S̄ =

Iγ
Ire f

Ir

Iτ +
Iγ

Ire f
Ir
,τ =

CUT

Iτ

(10)

We initially test the response of this gating variable circuit
through simulation with the constant stimulus (Ir) presented
during the first 0.5s(Figure 3). Before the stimulus onset, the
gating variable S stays at a low state. Once the stimulus
are presented, the gating variable increases gradually and
then keeps in its steady state. The steady state S̄ increases
with the input current Ir, but decreases with the current Iτ

(Figure 3a,b,d,e). Meanwhile, S̄ is also dependent on the
gain current Iγ , which determines the gain cofficient of the
circuit. Larger gain current Iγ leads to higher steady state S̄
and more distinct nonlinear saturation characteristics (Figure
3b). These simulation results are consistent with predictions
from Equation 10. After the offset of the stimulus, the gating
variable S decays exponentially, and the corresponding decay
speed increases with the current Iτ (Figure 3d). Meanwhile, the
decay response after the cancellation of the stimulus Ir shows
that the time constant τ decreases with the current Iτ and is
independent on Ir and Iγ (Figure 3c and f), which are also
consistent with the conclusion from Equation 10. Simulation
results demonstrated that the NMDAR gating variable circuit
we built can implement the major dynamics of its biological
counterpart.

B. Emulation of decision and its attractor dynamics in the
decision circuit with NMDARs

According to Equation 6,7 and 9, we built the neuromorphic
circuit of decision making, the block representation of which
is not shown here for lack of space in this paper but follows
the similar assembling principle as Figure 2.

We tested responses of this decision circuit through simula-
tions by the stimulus with different coherence levels, which are
given after 0s (Figure 4a). Responses of both populations stay
at a low activity before the stimulus onset. After the stimulus
is presented, one of them has a gradually ramp-up activity
and the other has a gradually decreasing activity. According
to the decision bound theory supported by some observations
in the monkey experiment [12], we set a fixed firing rate as
the decision threshold in our circuit simulations. Decision is
made once the activity of any population exceeds the decision
threshold, and corresponding time is measured as the reaction
time. The speed of the ramp-up activity increases with the
coherence of the stimulus, and the reaction time decreases
with it (Figure 4b), both of which are consistent with neural
activities and behaviors observed in the monkey experiments,
respectively [7]. However, because our decision circuit is a
noise-free system, the reaction time has a linear relationship
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Fig. 4: Decision making and its attractor dynamics in the neuromorphic
decision circuit. (a) Firing activities in the decision task. The stimuli are
presented to the circuit after 0s. Colors indicate different coherence levels of
the stimuli. (b) The decision time decreases as the coherence level increases.
(c) Phase-plane plot for two neural populations in the decision task, without
external input (c1), in the presence of unbiased stimuli (c2:Coh. = 0%) or
biased stimuli (c3:Coh.= 12.8%). Isti = 15pA. Solid dots denote stable steady
states, and circles denote unstable steady states.

with the logarithm of the coherence level (Figure 4b), which
has been observed in previous studies [4].

These simulation results can be interpreted by a phase-
plane analysis of the model described by Equation 6,7 and
9 (Figure 4c). In the (S1,S2) phase space (decision space),
two lines called nullclines are plotted first by setting the
dynamical equations dS1/dt = 0 and dS2/dt = 0 (Equation
6), respectively. The intersections of two nullclines are steady
states of the model. Meanwhile, the direction field in the
phase space shows how the system state will evolve. In the
absence of a stimulus, the two nullclines intersect with each
other only once, producing a stable steady state, that is, an
attractor (Figure 4c1), which explains that two populations
in the decision circuit have low spontaneous activities before
the stimulus onset. When an unbiased stimulus is presented
(Coh. = 0%), two nullclines intersect with each other three
times and produce a saddle-type unstable and two stable steady
states(Figure 4c2). They form two basins of attraction around
two attractors, respectively, representing two alternatives in
the decision. The system state locates in the vicinity of the
unstable steady state before the stimulus onset, and then
evolves toward one of two attractors once the stimulus is onset.
This saddle node structure determines the time course of neural
activities underlying two-alternative decision. When a biased
stimulus is applied, the phase space is no longer symmetrical.
As an example of the biased stimulus Coh. = 12.8% (Figure
4c3), the unstable steady state is closer to the attractor that
represents the second alternative, the fact of which shows that
the attractor state responsible to the first alternative has a larger
basin of attraction than the other. At the onset of a biased
stimulus, the initial state of the system is already lies within
the basin of the attractor of the first alternative, and the system
state will evolve toward its favored attractor, especially for our
noise-free circuit.

IV. CONCLUSIONS

In this study, we constructed a two-variable neuromorphic
decision circuit with the functionality of NMDARs to imple-
ment the attractor dynamics of perceptual decision making. We
demonstrated that this circuit presents both winner-take-all be-
havior and gradually ramp-up activities, which are determined
by the saddle-node structure in the dynamics and the slow
integration of sensory evidences, respectively. Moreover, the
nonlinear dynamics of the NMDAR-mediated synaptic current
contributes to the improvement of neural coding by the firing
activity during the decision task. The theoretical and emulation
results in this study are important for the embodiment of
our decision circuit on the hardware in the next step. A
reliable decision module, as well as neuromorphic modules
with other coginitive functions already developed, such as
working memory [13] and synaptic plasticity [14], [15], are
critical to the framework of the neuromorphic cognitve system.
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